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Interactions between a pair of two-electron (singlet or triplet) systems undergo- 
ing abstraction, insertion, exchange and association reactions are treated on the 
basis of the quantum Heisenberg model. The local spin-permutation-symmetry 
properties of these reactions ,:an well be visualized from the continuous or 
discontinuous variations of Penney's bond orders for the interacting electron 
pairs. In reactions where such a local permutation symmetry is not conserved, 
there is an apparent transition between two distinct valence-bond structures. It is 
shown that the concept of the local spin-permutation-symmetry conservatiori is 
useful for understanding the nature of the electron pairing requirement inherent 
in reactions of biradical species. 
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1. Introduction 

Group theories which treat the orbital, spin (magnetic) and permutation symmetries 
are often useful for the analysis of symmetry requirements imposed on chemical 
reactions. A typical example of the outcomes of such analysis is the so-called 
Woodward-Hoffmann rule; the orbital symmetry is conserved in concerted 
reactions [ 1J. The point-group symmetry of orbitals thus plays an essential role in 
the classification of nonradical reactions. Likewise, it has been pointed out that the 
local spin-permutation symmetry is conserved in the courses of f~vourable radical 
reactions [2, 3] when considered on the basis of the magnetic point-group [4]. 

The purpose of the present article is to analyze the local spin-symmetry con- 
servations in various modes of interactions between a pair of two-electron (singlet or 
triplet) systems on the basis of the quantum-mechanical Heisenberg model. The 
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interaction modes investigated include those that may lead to abstraction, insertion, 
exchange and association reactions. In considering the Heisenberg Hamiltonian, the 
interaction ~ .  ~j  between spins on sites i andj  can be replaced by the permutation 
operator ~3~, which is the transposition of spin coordinates o-~ and aj. Consequently, 
the problem of the local spin symmetry can be reduced to that of the local 
permutation symmetry. 

Penney's bond order bij [5] is also related with ~ ,  thus being possessed of the 
property of local permutation symmetry. Therefore, its variation with the progress 
of reaction can clearly display whether the interchange of the electron pairings (or 
exchange interactions [6]) would be an allowed or forbidden process in nature. It 
will be shown that the bonding property of a reaction system can be represented 
most conveniently by the resonance of the valance-bond (VB) structures cor- 
responding to the bases of the irreducible representation of a permutation group. 

2. Method  of  Calculation 

2.1. Heisenberg Model and Penney's Bond Order 

Derivation of the Heisenberg Hamiltonian from the ordinary spin-free Hamiltonian 
for a permutation group SN has been performed by a number of workers [7-10]. It is 
expressed as 

H= - 2  ZJi j~,  "~j (1) 
i<j  

where &~ is the exchange interaction, which can be related to the elements of S N. By 
using the Dirac identity [11] 

~, .  ~ j  = - (1 - 2~D/4, (2) 

Eq. (1) can be rewritten into 

1 
H = -  ~ Jij(1 - 2~37j ) (3) 

2 i < j  

where ~i~ is the spin permutation operator whose parity is - 1 and 1 for singlet and 
triplet spin pairs, respectively. Since 

[ ~ ,  ~ 2] = [~3~, ~=] =0, ~ ~ S N (4) 

the eigenstates to H should automatically be eigenstates to ~ = and ~z with the 
eigenvalues S(S+ 1) and M, respectively. Thus, the eigenstates can be classified 
according to the irreducible representations of the permutation group SN. 

We now consider the eigenfunctions of H explicitly. Let {0~} be a set of linearly 
independent basis spin functions which are simple products of the ~- and fl-spin 
functions and provide a common eigenvalue M of ~ .  The eigenfunctions in 
question can be expressible as a linear combination of these basis spin functions: 

Y, ck.Og. (5) 
q 
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HoweveL because H and 6 2 also mutually commute, the eigenstate functions of 
our search should better be expanded by the simultaneous spin eigenfunctions 
{2s+l~M1 of 6 2 and 6z Thus, - - p  ) 

2S+ ' ~y/M = Z Sdkp 23+ I o M "  

P 

The expansion coefficients Sdkp are given by 

(6) 

Sdkp~ E ~ /13MI 2S+ IlL, M \  t'kq\t"q I ~'p /" 
q 

In this paper, we will use the Serber-type spin functions for 2S+~r~M [12, 13]" ~ p  

(7) 

2S+ 1 M t Op (N) = ~ C(S, M - m . ,  S., m. IS, M) zs'+'OM-m.(N- 2)w.(S., m.) (8) 
tn n 

Here, C(S', M - m . ,  S., m. IS, M) are the Clebsch-Gordan coefficients [14, 15]; N 
= 2n is the total number of electrons; 2s,+ loM-.n( N _  2) is the spin function for an (N 
- 2)-electron system of the spin angular momentum S' and its z-component M -  m.; 
and w.(S., m.) is the spin function for the nth geminal pair. Since S., which is the 
spin angular momentum of the nth geminal pair, should be either 0 or 1, S' can only 
be S+ 1, S or S -  1. Correspondingly, the geminal spin functions w.(S., m.) of our 
concern are: 

w.(1, 
w.(1, 
w.(1, 

w.(0, 

1)=~(2n-1)~(2n) 

O)=[a(2n-1)fl(2n)+fl(2n-1)a(2n)]/~/2 
-1)=fl(2n-1)fl(n) 

O)=[~(2n-l)fl(2n)-fl(2n-1)~(2n)]/x/2 

(9) 

The spin functions, Eq. (8) are constructed by a genealogical procedure of coupling 
the subsets with the geminal pair of two electrons. In the case of four-electron 
systems, in which two two-electron pairs (1, 2) and (3, 4) are regarded as the subsets 
(or molecules), construction of such functions is quite an easy task. 

In connection with the eigenstate functions, it is advantageous to consider the bond 
order b u between sites i andj. Penney [5] defined the bond order operator/~u for two 
spins 6z and 6 s as follows: 

bij -~. - - ~ 6  i ' 6 j  ( i < j )  ( 1 0 )  

Obviously, the ~s is directly related to the local permutation symmetry just as is the 
case with the Heisenberg Hamiltonian, Eq. (3). The bond orders b u in given states 
are calculated as 

b i j ~  <2S+l~Ufbij  i2s+l ~M~ = ~  SA Szt /2S+]AM,~i j f 2S+t~M',> (1 l )  t*kp ~kp'\ tJp I ~p" / 
pp' 

In practice, the state functions of M =  0 and 1 are utilized for singlet (S = O) and 
triplet (S= 1) states, respectively. 
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2.2. Serber-Type Spin Functions and the VB Structures in Four-Electron Systems 

In four-electron systems, there are six and four linearly independent basis spin 
functions for M =  0 and M =  1, respectively: 

M=O 

M = I  

O~=~(1)B(2)~(3)fl(4) 

8~=~(1)~(2)~(3)fl(4) 

8~=u(1)~(2)fl(3)fl(4) 

8~=~(1)fl(2)fl(3)~(4) 
8~=fl(1)~(2)fl(3)~(4) 
O~=fl(I)fl(2)~(3)~(4) 

(12) 

01 = ~(1)c((2)c((3)fl(4) 021 = c((1)c~(2)fl(3)~(4) 
8~ = ~(1)fl(2)c~(3)~(4) 01 =/3(1)~(2)~(3)~(4) (13) 

The matrix elements (SM[ HI 0~> are summarized in Tables 1 and 2 for the cases of  
M = 0 and 1, respectively. The energies Ek and coefficients Ck~ are determined by 
diagonalization of  this matrix. 

Serber's spin functions, Eq. (8) are given by 

1 o o o 10~ Y) =~ (81 - 82 - 03 + 0 ~ 

1 ( ~ ~  Y )  = 2 . ~  [ 2 ( 0 ~  -1- 860) - (80  -~ 80 -~ 00 -}- 8 0 ) ]  

v 

1(8 o + 8 o _ 8 o _ 8 o  ) 30o(~ x3 Y) =~ 

30o(3x ~ y) =~(8  ~ - 8 o + 8 o _ 8 o) (14) 

30o(~x3r)  = ~ ( 8 o - 8  o) 

50o(3x3r) ~ 6 ( 8 o + 8 o +  o o o o = 0 3 " t - 0 4 + 0 5 + 0 6 )  

3 1 1 3 - -  1 1 o , (  x r ) - ~ ( 0 ~ - 0 1 )  

o~(3x i r )  = - ~  (oi - 8D 
v 

3~')113 V3 Vh - -  1 t~l (15) �9 -,3, ~, ~ ,  -~,~,~ + ol "8~ - o 1) 

5 ~ 1 ( 3  y 3  "g~ - -  1 (~11 v ,  ~ . . , - ~ , ~ + 8 ~ + 0 1 + 8 1 )  

where lO~ for instance, is the singlet spin function constructed by the 
coupling of  triplet molecules 3X and 3 y  (i.e. the singlet-coupled triplet-triplet 
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Table 1. Matrix elements (0q [ HI 0r for the spin functions with M = 0 

Diagonal elements: 
(01 I H[ 0l) =�89 -J13 + Ji4 At- J23 - J24 + J34) 
(02 IH102) =�89 +J13 - J14- J23 +,)'24-}-,]34) 
( 031Hl O3)=( OE l n102) 
(GIH104) = (0i IH101) 
(05 l Ht Os) = ~ -  J~a + Jx3 + Ji4 + J23 + J24- Ja4) 
(06 [ HI 06) =(051HI 0s) 

Off-diagonal elements : 

02 03 04 05 

01 
02 
03 
04 
05 

06 

-J34 -J12 0 -J23 -J14 
0 -J12 -J24 -J13 

-Ja4 -Yla -J24 
--J14 -J23 

o 

structure). Other spin functions may be termed likewise. The elements 
_p  Op,) of Penney's bond-order matrices for singlet and triplet states 

are summarized in Tables 3 and 4, respectively�9 

Each of Serber's spin functions uniquely corresponds to a VB structure written by 
the coupling of geminal spin pairs: 

(i i) (23 1OO ~ J O  o ~ + 

1 - 4  1 4 /  

2 2. 3 )  
3 0 1  ~ [ 

1. 4 

(i .3 1 2. 3. 
3031 ~ + 

�9 4 .  1 - 4  

where 10~ and 3 O l ( 3 X 3 y )  are represented by the resonance of two 
structures, however. In all these VB structures, full lines indicate the singlet spin 
coupling of the two sites while the unlinked sites have no spin coupling�9 In singlet 
states each site is linked with another, but there remain two points unlinked in triplet 
states. 
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Table 2. Matrix elements ( 0q 4 H [ 0r ) for the spin functions with M = 1 

Diagonal elements: 
<01IHI Ol>=�89 
(OELH[O2)=~-Jlz+J~z-Jl,+J23-J2,+J34) 
<0aIH103>=�89 
<0,1HI 04>=�89 ) 

Off-diagonal elements: 
02 

01 -J3* 
02 
03 

03 04 

-J24 -J14 
-J23 -J13 

-112 

Table 3. Bond order matrix elements for the singlet states 

1 

<~O ~ [~,jl ~O~ 

1 0 

2 

3 

<10~ I blj [ 102~ > 

3 4 . / ~ [  2 

0 0 1 1 - 1/3 
0 0 

1 

3 4 

-- 1/~/3 l/x/~ 

0 

3 

2/3 
2/3 

2/3 
2/3 

-1/3 

2.3. Interaction Models 

The spin interactions in the four-electron system which we intend to examine are as 
shown in Fig. 1. Models A and B correspond to the linear abstraction processes of a 
pair of two-electron species. Models C and D are for cyclic approaches with isosceles 
conformations, which are responsible for the insertion or migration process. Models 
E, F and G represent the rectangular approaches which are the models of exchange, 
addition and association reactions. Models H and I express the staggered 
approaches corresponding to exchange and addition reactions. 

In the present model systems, each pair of reaction sites, (1, 2) or (3, 4), represents 
one molecular system. In a given molecular system, the energies for the singlet and 
triplet spin couplings are given as 3js/2 and -JT/2, respectively. For the sake of 
simplicity, we assume j s =  j r=  j throughout this paper. J can be taken to be 
negative in sign without loss of generality [16-19]. Thus, the ground singlet and 
triplet reactants are characterized by negative (J) and positive ( - J )  exchange 
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Table 4. Bond order matrix elements for the triplet states 

<3oi 16j1301> 

1 

<30~ I#,~I ' o h  ,.<,2 
_ 1/3 

<3oi 16xl 3o~> 

1 0 

2 

3 

3 

1/3 
1/3 

3 4 

0 
0 
- 1/3 

1/3 
1/3 

- 1/3 

,/2/3 ,/2/3 

-,/2/3 -`/2/3 

0 

<30~16ij 1301> 

- l/3 

<3oi 16,jl 3oh 

i ~ 
<3o~16il3O~> 

1 0 

2 

3 

3 4 

- 1/3 1/3 
1/3 - 1/3 

0 

3 4 

-`/2/3 ,/2/3 
0 

interactions, respectively. The intermolecular exchange interactions (J') are in- 
corporated only for neighbouring pairs. In the analyses of reactions, we express the 
ratio J'/J by the symbol x as the only variable parameter. That x = 0 indicates that 
two molecular systems are far away. The larger absolute value ofx implies the closer 

Fig. 1 ~ I .  Interaction models in four- 
electron systems. J and J' denote the in- 
tramolecular and intermolecular exchange 
integrals, respectively 

J J' J J J' - j  
C -  O -  . . . .  - o  o o o-. . . . .  - . 0  

1 2 3 4 1 2 3 
A B 

2 j ,  2 , 

J/"{-= 
C D 

2 J' 3 2 J' 3 2 J' 3 

1 J' a I J' 4 1 ~'J' ~ 

E F G 

2 3 2 3 

_J -~-i,".~j. - 

I 4 I 4 

H I 
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approach of the two molecular systems. Eigenvalues of  H expressed in units of  - J 
will be referred to as the reduced energies: 

2s+ 1Ek _= (28+ 1 ~,.~M I H [ 2s+ 1 ~M)/( _ j )  (1 6) 

The reduced energies 2s+ ~Ek are the functions'of x, and so are Penney's bond orders 
b u �9 

3. Conservations of the Local Permutation Symmetry 

3.1. Linear Abstraction Models A and B 

We will first examine model A. The functional dependences of  the reduced energies 
on x are depicted in Fig. 2. 

As is apparent  f rom Fig. 2, the ground state is singlet in both the positive and 
negative x-regions. The spin function corresponding to the ground singlet state is 
given by 

x/3(V/~+2) x - 2  {1Oo x / ~ + 2 x - 2  l~Pl=2~*14(2x//~+x+2)l/2 I x - 2 l  x / ~ ( x / ~ + 2 )  1 0 ~  (17) 

where ~ = x z - 2x + 4. When x = 0, the ground spin function reduces to - a Oo. As [xl 
increases, the singlet-coupled bitriplet component  ~O ~ is mixed with the singlet- 
coupled bisinglet one 10~ Therefore, no intersection occurs between the energy 
surfaces of  the two singlet states. 

Variations in Penney's bond orders with x are illustrated in Fig. 3. When x - -  0, the 
intramolecular and intermolecular bond orders are 1 and 0, respectively. As the 

E 

~ -  
/ . j "  3%. 

J 

' -1' .0 1.0 _ - -  

. . . . . . . .  -2;:= =--:'.'" % 
- "  . - : . o  "'-.3. 

i-4.o 

"-X 

Fig. 2. Variations in the reduced energies with 
x in the course of the linear abstraction process 
of singlet species (model A). ( - - )  singlet, 
( - - - - )  triplet, and ( - - - - - )  quintet 
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Fig. 3. Functional dependences of Penney's 
bond orders on x in the course of the linear 
abstraction process of singlet species (model A) 

b12, b34 

i 

b14,b23 

1.0 

-0.5 

~X 

reaction proceeds (x > 0), the spin coupling between sites 2 and 3 increases its singlet 
character (bza > 0) until a bond is formed between the reactants. For x < 0, on the 
other hand, the intermolecular spin coupling is of the triplet type (b23 < 0). Each 
bond order varies continuously, indicating no sudden interchange of the local 
permutation symmetry. Thus, the process can be characterized as a local spin- 
permutation-symmetry allowed process. The entire system can be represented by the 
resonance of the VB structures: 

[ I [ - - I  

(I-2 3-4)+(I 2-3 4+i 2, 3 4) 

The spin functions of the lowest excited triplet states are given by 

3 t (18) 

and 

1 31[/2= %~ (301 -- 31~21), (19) 

where c~ = xB+ 1. As can be seen in Fig. 2, the excited triplet reaction proceeds 
without surface crossing in either of the negative and positive x-regions because of 
the smooth mixing among the triplet spin components. Consequently, the linear 
abstraction process of lowest excited triplet species can also be characterized as a 
local permutation-symmetry allowed process. It will be because of its local 
permutation-symmetry allowed character that the hydrogen abstraction reaction by 
3(n-7r*) excited ketone readily takes place. 

/ C - - O  + H--C~ IC--O--H + "C~- 

Next, model B for the linear abstraction by a ground triplet biradical species is 
examined. As can be seen in Fig. 4, the ground state is always triplet in both the 
positive and negative x-regions. The ground triplet energy surface does not intersect 
other triplet surfaces in the course of reaction. 
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3.0 

. . . . . . .  3,~3 

/ 1.p , 

-3.0 " .  

:,x 

Fig. 4. Variations in the reduced energies with 
x for the linear abstraction by triplet biradicals 
(model B) 

It was ascertained that the bond order bz3 changes continuously with x, keeping the 
same sign as that of x. Consequently, the linear abstraction of ground triplet 
biradical species is characterized as a permutation-symmetry allowed process. The 
hydrogen abstraction from the H2 molecule by triplet methylene may be regarded as 
one example of such cases: 

3.2. Insertion Models C and D 

Fig. 5 illustrates how the reduced energies vary with the change in x in the course of 
the insertion process C. Two distinct energy surfaces, whose spin functions are 

lkvl=l@~ and 17Jz=aO~ (20) 

intersect each other at x = 2. 

Penney's bond orders (Appendix B) calculated for the ground spin functions are 
discontinuous accordingly. The spin coupling between the pairs (1, 2) and (3, 4), 
which is of the singlet type at the initial stage of reaction, changes into the triplet type 
at the crossing point x = 2. Intermolecular bond orders also suddenly change from 0 
to 2/3 at this point. Thus, the local spin-permutation symmetry is not conserved in 
"this particular case. The ground-state VB structure changes as follows: 

2 2--..2..." 
(I  1 3 - - 4 ) ~ - - +  ( i > 4 +  1 / 3  4)  

The insertion reaction of singlet biradical species should therefore be characterized 
as a local spin-permutation-symmetry forbidden process. 
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Fig. 5. Variations in the reduced energies with 
x for the insertion process (C2v) of singlet 
biradical into singlet pair bond (model C) 

%% 
"-% 

J 
i 

-2.0 J ' - -  1.0 

s 

4.0 

59 J 

20 Y "  

2:0,x 
. . . .  3~2 

~1 x, 
-4.0 ", 

The above results are similar to those for the insertion of a doublet radical [2]. The 
similarity is no doubt due to the irrelevance of the fourth electron at site 4 to the 
bond formation. In fact, in the addition of l ( n -  re*) excited carbonyl compounds 
toward hydrocarbons, the n* electron formally remains intact [20]. 

The spin function corresponding to the lowest excited triplet state is given by 

3 x + x / ~ + 2  f3 1 ~ - [ 3 x + x / ~ - 2 \ 3  1 ] 
31Pa =x//2eli4(3x//~ + 9x- 2)ai2 l 02-~/2~3x + x//~ + 2) 03~ (21) 

where e = 9x  2 - 4x + 4. At the initial stage of reaction (x = 0), the spin function is 
3021 , which corresponds to the following VB structure: 

(i 3 4) 
The energy surface does not intersect other triplet surfaces at x > 0. As x increases, 
the 301 component to be represented by the VB structure 

(i j 3  .4 + -3 ~4 
2. 

mixes in progressively to permit a smooth bond interchange between the reactants. 
It may be concluded that the insertion reaction of singlet biradical species is 
rendered permutation-symmetry allowed on the photochemical triplet excitation of 
its reaction partner. 
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b12 

b13, b23, b14, b24 
--2'.0 -;.o 

b34 

b 

1.0 

0.5 

-0.5 

b'f3, b23 

2..~b34 
11o ~ '• 

'D14, b24 
b12 

Fig. 6. Functional dependences of Penney's 
bond orders on x of the insertion process (C2~) 
of triplet biradical into singlet pair bond 
(model D) 

In the insertion reaction model D for triplet biradicals, lower triplet states are given 
by 

3 ~  1 =30~ 

2 + 3 x + x / ~  ~ 2 -  3 x - x / ~  3 021 "}" 31~ 31"~ (22) 
3~2--O~U4(3.~/~+9X+2)1/2 [, , /2(2 + 3X + X/~ ) J 

where e =9x 2 + 4 x + 4 .  The excited triplet state 3 7, 2 is stabilized by the mixing 
between the spin functions 3021 and 301 . The ground state changes from 3 7/1 to 3 ku z 

at x = ~ -  1 (Appendix A). The (1, 2)-pair is converted from singlet to triplet at the 
crossing point. Intermolecular pairs (1, 3) and (2, 3), on the other hand, become 
singlet-coupled after the crossing. Thus, variations of Penney's bond orders are 
discontinuous in the course of reaction, as can be seen in Fig. 6. In accordance with 
the discontinuity of the bond orders, the VB structure is also varied as follows: 

(i 4) CI 4+ 2>4) 
After all, the insertion reaction of triplet biradical species must be a permutation- 
symmetry forbidden process. For example, insertion of triplet methylene into H2 
should be forbidden 1-20]. 

H.. H~C / "-..%1 

H.....:C\ X > H~ \ 

3.3. Addition or Exchange Reaction Models E, F and G in the D2h Conformation 

Model E of  addition or exchange reaction of singlet species is first examined. 
Variations of the reduced energies with x are illustrated in Fig. 7. 

Fig. 7 shows that the ground state is singlet, exhibiting no surface intersection. The 
ground spin function is given by 

,,/3(~/~ + 1 ) { l o o 2 x - l + x / ~ l O O }  ' (23) 
1~P1 =2cd /4 (2x /~+x+  1) 1/2 x /3 (x /~+  1) 
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Fig. 7. Variation in the reduced energies with 
x for the exchange or addition process (D2h) of 
singlet biradicals (model E) 

E 

20 j. 'J 

>X 

where e = x 2 - x + 1. There is no transition between different VB structures because 
of the above mixing. Correspondingly, the intermolecular bond orders bl~ and b23 
both increase continuously, retaining the singlet spin coupling which is responsible 
for the bond formation. Therefore, both the addition and exchange reactions of 
singlet species proceeding in a planar (2s+2~) conformation are regarded as 
permutation-symmetry allowed processes, even though they are obviously for- 
bidden in the orbital symmetry criterion [1]. The exchange reaction H 2 + D  2 

2HD is a typical example of such reactions. Insertion of the singlet oxygen atom 
O(~D) into a bond also falls in this category. 

H - _(T) H ~  
l 0 > H ---@ H ~ 0  

The spin function corresponding to the lowest excited triplet state is given by 

3~+ =~22 (301 + 302~)' (24) 

where the signs + and - are used for the positive and negative x-regions, 
respectively. In neither positive nor negative x-region, is there surface crossing 
present. The bond interchange is also smooth, indicating the local spin- 
permutation-symmetry allowed character. This is well consistent with the facile (2s 
+2~) photochemical cycloaddition between ground singlet and excited triplet 
olefins. \ /  \ /  \ */ 

C C * ~C--C- 

dF+ II J 1 
C C --C C~ 

/\ / \  / \ 
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J 'q~2 . -  

I 2,0 . ~ - ~3;3 
. 5 , /  

~ { ~ - . ~ . .  . / ~ .~ - . .  2'.0 

-4.O 

~X 

Fig. 8. Variations in the reduced energies with 
x for the exchange or addition process (D2h) of 
triplet biradicals (model F) 

The insertion model F of addition or exchange reaction between two triplet 
biradicals can be treated in a similar manner.  The singlet-coupled bitriplet spin 
function is dominant  in the course of  reaction (x > 0) 

1 7 J ' - 2 7 ~ / 4 ( 2 x / e - x  + l) 1/2 ( x / 3 ( x / e +  1) 

where c~ = x 2 + x + 1. The surface crossing does not take place (Fig. 8), and the bond 
interchange is smooth (Appendix B). Thus the singlet coupling of ground triplet 
species is a permutat ion-symmetry allowed process. The dimerization of triplet 
methylenes in the D2h conformation could be mentioned as an example. 

H ~jcfl----% ~ H H~ ~H 
H/u~._____ _..~_)u ~ H > H/C= C~,l 

Model G is a modification of model F such that the two intermolecular exchange 
interactions are taken to be different. By assuming that the ratio 7 of  these two 
interactions is negative in sign, we may deal with the triplet coupling of  two triplet 
species. The ground spin function is given as 

1 [ , j~+(~_ l)~l~/~ 1 rl + (~-  l )x- , j~](~o~+~o ~ ~) 
3 7,1 _ 2~ 1/~ [ -~2  

' V - -  

+ [1 + ~ - ( ~  - 1)x3 ~o~ }, 
(26) 

where ~ = (? - 1 ) 2 x  2 -k  1. 

Variations of  the reduced energies and Penney's bond orders for the case of  ~ = - 0.5 
as an example are depicted in Figs. 9 and 10, respectively. It  is apparent  from Fig. 9 
that the ground state is indeed triplet. It  does not intersect other triplet states. 
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Fig. 9. Variations in the reduced energies with x 
for the trapezoidal association process of triplet 
biradicals (model G). y=-0.5 

E 

4.0 
h,~ 2 

/ I 

2.0 . - " "  3 ~ 3  

1:o 12. ' .o  ,x 
-- , - - - 

J "  -z0 "-.-">--_, / / /  - L . U  ~,,.. 1 ~ " ~  

\ 
3'~1 \ \  x 

-4.0 

Variations of the bond orders are all continuous. The intermolecular bond order b 2 3 

increases with increasing x, indicating an intermolecular bond formation. The 
continuous decrease of b14 from positive down to negative values indicates that a 
triplet spin coupling is induced between sites 1 and 4. Since the bond interchange is 
smooth, the overall process should be permutation-symmetry allowed in nature. 
The association reaction of triplet O atoms forming the triplet 0 2 molecule 
corresponds to this reaction model. 

J_ ? ~ o ~ - . -  - ~ o ~  ~ - -  

3.4. Exchange or Association Reaction Models H and I with D2a Symmetry 

Model H is a (2 s + 2a) version of model E. As Fig. 11 shows, the surface crossing takes 
place between singlet states at x = 1. The VB structure of the ground state also 
changes as follows: 

The bond interchanges occur suddenly in accord with this transition (Fig. 12). Thus, 
the association or exchange reaction of singlet species in the D2d conformation is to 
be characterized as a permutation-symmetry forbidden process. 

The above prototype reaction is forbidden with respect to the orbital symmetry also. 
As has been mentioned in Section 3.3, the (2s+ 2s) exchange reaction in the Dzh 
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1.0 f 
f 

~ _~0.5 b23 

-0.5 

Fig. 10. FunCtional dependences of Penney's 
bond orders on x for the trapezoidal association 
process of triplet biradicals (model G). 7 = - 0 . 5  

conformation is orbital-symmetry forbidden but local spin-permutation-symmetry 
allowed, The difference between the D2h and Dsa paths lies in the local spin- 
permutation symmetry. This is one of the reasons why both the orbital and spin- 
permutation symmetries are necessary to fully characterize the chemical reactions. 
From the viewpoint of local spin-permutation-symmetry conservation, the D2h path 
is considered to be more favourable than the D: d path. Detailed calculations [22] 
support this conclusion. 

The spin functions corresponding to the lowest excited triplet state are given by 

3~_~301~ and302i , 0~<x<l 
(27) 

-(~O~, x~>l 

Here also, a surface crossing occurs at x =  1, the transition being 

2 J  3 

) . . . . . . . . . . . .  A V 

1 �9 . 4  

-2 .3 

-i.0 -(.0/" 
. . . . .  ? y ' -  . . . .  

, /  
/"  

E 
x x 

~'x 4.0 / "  

"',, 

/ "  

/ 

\ ,  1.0 2.0 

., N \  

�9 1'1 ~'~'2 \ 

-4.0 \ 
Fig. 11. Variations in the reduced energies 
with x for the exchange or addition process 
(D2d) between singlet species (model H) 
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Fig. 12. Functional dependences of Penn.r 
bond orders on x for the exchafige or addition 
process (D2d) between singlet species 
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Thus the reaction is also permutation-symmetry forbidden even in the excited triplet 
state. This implies that the exchange reaction with a D2a conformation would hardly 
take place by photochemical excitation of a reactant. 

Finally, model I of association or exchange reaction between ground singlet and 
triplet biradicals is examined. As can be seen from Appendices A and B, two triplet 
energy surfaces intersect at x = 1, leading to the transition of the VB structure: 

(/34) 1 i) 
The association or exchange reaction is therefore a permutation-symmetry 
forbidden process. Thus the D2d conformation is an unfavoured path in the case of 
radical reactions. 

4. Concluding Remarks 

As has been shown in the preceding section, the quantum-mechanical Heisenberg 
model describes reliably the bond interchange processes in which open-shell species 
such as singlet and triplet biradicals participate. In particular, the model is useful for 
the elucidation of the principal role of the local spin-permutation symmetry in these 
reactions in relation to Penney's bond order between reaction sites. The re- 
lationships of the energy levels of various spin states obtained by the Heisenberg 
model are also in good agreement with the results of ab initio calculations reported 
by some workers [22, 23]. Thus, the nature and location of the surface crossing 
points in radical reactions can be inferred reasonably by the simple and visual 
concept based on the present model. 

The main points brought out in the present treatments are summarized as follows: 

1) Linear abstraction processes of singlet and triplet biradicals are local spin- 
permutation-symmetry allowed reactions. Linear abstraction in the lowest 
excited triplet state is also permutation-symmetry allowed. 

2) Insertions of atoms in the 1D state are local spin-permutation-symmetry allowed 
processes, whereas insertions of triplet biradicals are forbidden. The insertion of 
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singlet biradical toward excited triplet species should be a permutation- 
symmetry allowed process. 

3) The exchange (or addition) reactions in conformations of the D2h and D2a 
symmetries of ground singlet species are permutation-symmetry allowed and 
forbidden, respectively. The same generalization can be made for reactions of the 
lowest excited triplet states. 

4) Association reactions of triplet biradicals such as the oxygen atom and triplet 
methylene are permutation-symmetry allowed. 

In short, radical reactions of open-shell species proceed in such a manner that the 
bond interchanges occur smoothly, retaining the bonding characters expressed by 
Penney's bond orders. The local spin-permutation-symmetry is conserved in 
favourable radical reactions of  closed- as well as open-shell species. 

Appendix A 

The reduced energies of reaction models B, D, and I are as follows: 

M o d e l  B 

S ingle t  s ta tes  

~ 1 = - 3x/2, ~ 2 = x /2 .  

Triplet  s ta tes  
The energies are given as the roots of the secular equation 

E + x / 2 - 2  - x - 1  - 1  

- - x  E + x / 2 + l  - 1  = O. 

0 0 E - x / 2 + l  

Quin te t  s ta te  

2E = x /2 .  

M o d e l  D 

S ingle t  s ta tes  

~ 1 -- - 2x, ~ 2 = 0. 

Triplet  s ta tes  

I E  1 = - 2, 

1E 3 = 1 - x / 2  + x / ~ / 2 ,  

Quin te t  s ta te  

2 E = x .  

I E 2 = 1 - x / 2 -  ~ /~ /2 ,  

c~=9x2 + 4 x + 4 .  
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Model  I 

Singlet states 

~ 1 = - 4x, ~  2 = 0. 

Triplet states 

1E 1 = - 2 ,  1E2= - 2 x ,  

Quintet state 

2E = 2x. 

1E 3 = 2. 
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Appendix B 

Penney's bond orders for models C, E, F and I are as follows: 

Model  C 

1 x < 2  
b l z = b 3 4 =  - 1 / 3  x~>2 

bl 3 = b23 = b14 = b24 = ~0 

g .  

2/3 

x < 2  

x~>2 

Model  E 

~ / ~ - x + 2  
b12 =b34 - 

3w/~ 

x / / ~ - x -  1 
b13 = b 2 4 -  

3x/~ 

2x + x / ~ -  1 
b14 =bz 3 = 

3x//~ 
~ = x  2 - x +  1 

Model  F 

When x > 0 

x / / ~ - x - 2  
ba2 = b 3 4 -  

3x/~ 

x / ~ - x +  I 
b13 =b24 = 

3x/~ 

2x + x//~ + 1 
b14=b23 - 

3x/~ 
c ~ = x Z + x + l  
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When x < 0 

b12 = bl 3 = b14 -"= b23 = b24 = b34 --- - 1/3 

Model I 

{ 1  x < l  
b12= 1/3 x~>l' b34=-1/3  

0 x < l  
b13 =b14=b23 =b2,,= 1/3 x>~ 1 
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